Vì sao hàm lượng GC trong chuỗi DNA lại quan trọng


G-C base-pairs have stronger interactions (than A-T BPs) arising from their ability to form three hydrogen bonds in water. A-T base-pairing yeilds only two hydrogen bonds. That is why the melting point of double stranded DNA is higher for high G-C content DNA as well as for longer pieces of DNA. High GC content DNA can make it difficult to perform PCR amplification, because it is difficult to design a primer that is long enough to provide great specificity, while maintaining a melting point below the optimal temperature of DNA polymerase. DMSO, Glycerol, Salt or MgCl2 can all be used to perturb the effective melting point.

Uses:

it is site of rich methylation/acetylation that regulate different gene expression

Tham khảo thêm từ wikipedia:

GC-content

From Wikipedia, the free encyclopedia

Nucleotide bonds showing AT and GC pairs. Arrows point to thehydrogen bonds.

In molecular biology and geneticsGC-content (or guanine-cytosine content) is the percentage of nitrogenous bases on aDNA molecule that are either guanine orcytosine (from a possibility of four different ones, also including adenine andthymine).[1] This may refer to a specific fragment of DNA or RNA, or that of thewhole genome. When it refers to a fragment of the genetic material, it may denote the GC-content of part of a gene (domain), single gene, group of genes (or gene clusters), or even a non-coding region. G (guanine) and C (cytosine) undergo a specific hydrogen bonding, whereas A (adenine) bonds specifically with T (thymine).

The GC pair is bound by three hydrogen bonds, while AT pairs are bound by two hydrogen bonds. DNA with high GC-content is more stable than DNA with low GC-content; however, the hydrogen bonds do not stabilize the DNA significantly, and stabilization is due mainly to stacking interactions.[2] In spite of the higherthermostability conferred to the genetic material, it is envisaged that cells with DNA of high GC-content undergo autolysis, thereby reducing the longevity of the cell per se.[3] Due to the robustness endowed to the genetic materials in high GC organisms, it was commonly believed that the GC content played a vital part in adaptation temperatures, a hypothesis that has recently been refuted.[4] However, the same study showed a strong correlation between higher temperatures and the GC content of structured RNAs (such as ribosomal RNAtransfer RNA, and many other non-coding RNAs); GC base pairs are more stable than AU base pairs, due to the fact that GC bonds have 3 hydrogen bonds and AU only has 2 hydrogen bonds, which makes high-GC-content RNA structures more tolerant of high temperatures. More recently, the first large-scale systematic gene-centric association analysis demonstrated the correlation between GC content and temperature for certain genomic regions while not for others.[5]

In PCR experiments, the GC-content of primers are used to predict their annealing temperature to the template DNA. A higher GC-content level indicates a higher melting temperature.

Determination of GC content[edit]

GC content is usually expressed as a percentage value, but sometimes as a ratio (called G+C ratio or GC-ratio). GC-content percentage is calculated as[6]

\cfrac{G+C}{A+T+G+C}\times\ 100

whereas the AT/GC ratio is calculated as[7]

\cfrac{A+T}{G+C} .

The GC-content percentages as well as GC-ratio can be measured by several means, but one of the simplest methods is to measure what is called the melting temperature of the DNA double helix usingspectrophotometry. The absorbance of DNA at a wavelength of 260 nm increases fairly sharply when the double-stranded DNA separates into two single strands when sufficiently heated.[8] The most commonly used protocol for determining GC ratios uses flow cytometry for large number of samples.[9]

In alternative manner, if the DNA or RNA molecule under investigation has been sequenced then the GC-content can be accurately calculated by simple arithmetic or by using the free online GC calculator.

GC ratio of genomes[edit]

GC ratios within a genome is found to be markedly variable. These variations in GC ratio within the genomes of more complex organisms result in a mosaic-like formation with islet regions called isochores.[10] This results in the variations in staining intensity in the chromosomes.[11] GC-rich isochores include in them many protein coding genes, and thus determination of ratio of these specific regions contributes in mapping gene-rich regions of the genome.[12][13]

GC ratios and coding sequence[edit]

Within a long region of genomic sequence, genes are often characterised by having a higher GC-content in contrast to the background GC-content for the entire genome. Evidence of GC ratio with that of length of thecoding region of a gene has shown that the length of the coding sequence is directly proportional to higher G+C content.[14] This has been pointed to the fact that the stop codon has a bias towards A and T nucleotides, and, thus, the shorter the sequence the higher the AT bias.[15]

Application in systematics[edit]

GC content is found to be variable with different organisms, the process of which is envisaged to be contributed to by variation in selection, mutational bias, and biased recombination-associated DNA repair.[16]The species problem in prokaryotic taxonomy has led to various suggestions in classifying bacteria, and the ad hoc committee on reconciliation of approaches to bacterial systematics has recommended use of GC ratios in higher level hierarchical classification.[17] For example, the Actinobacteria are characterised as “high GC-content bacteria“.[18] In Streptomyces coelicolor A3(2), GC content is 72%.[19] The GC-content of Yeast(Saccharomyces cerevisiae) is 38%,[20] and that of another common model organism, Thale Cress (Arabidopsis thaliana), is 36%.[21] Because of the nature of the genetic code, it is virtually impossible for an organism to have a genome with a GC-content approaching either 0% or 100%. A species with an extremely low GC-content is Plasmodium falciparum (GC% = ~20%),[22] and it is usually common to refer to such examples as being AT-rich instead of GC-poor.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s